
Reactionary Targeting Defense

System (RTDS)

Joseph Musante, Calvin Sands, and Chance
Reimer

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The goal of this project is to provide a basis for
future development related to tracking and targeting drones.
By using computer vision, we are able to recognize a drone
then fire a laser directly at it. Through extensible design,
future developers will be able to use our project as a
foundation to build upon by expanding its size and scope. The
design uses a NVIDIA Jetson Nano to do image processing
and sends targeting information to a servo PCB via UART.
The custom-made servo PCB uses an atmega328p
microcontroller to process UART data and control the servos
to pan and tilt the camera and laser.

Index Terms — Computer vision, convolutional neural
networks, microcontrollers, artificial intelligence, embedded
software.

I. INTRODUCTION

In today’s current age drones are becoming

exponentially more popular for not just commercial

purposes but also hobbyist and everyday folks as well. This

rapid growth has raised some questions such as how we can

go about protecting ourselves from the inevitable

weaponization of drones.

With that said there is not much research or other similar

noncommercial projects who are implementing a fully

autonomous solution to this issue. Having a system that

could be used in commercial or noncommercial

environment is key which is why keeping the cost low was

paramount. Ideally someone who is passionate about

computer vision and image processing should be able to

pick up our project where we left off by hitting the ground

running with an entire targeting system already

implemented. Our project will be able to detect a drone

between one to five feet then by using geometry we will be

able to get the location of the drone in the image. From

there our servo system uses two servos one to pan and the

other to tilt the camera and laser. Once the drone has been

successfully targeted, we will fire a laser on the drone as a

proof of concept for taking down the drone.

II. SYSTEM HARDWARE

The system hardware chosen for the RTDS was selected

for its balance of power and affordability. The goal was to

develop the RTDS using practical, accessible components

that would increase the reproducibility of the design, while

also maximizing the capabilities of such a computationally

expensive process that the RTDS would be performing.

A. Microcontroller

The microcontroller of choice for our project is the

atmega328p for many different reasons. First and foremost,

we wanted to choose this microcontroller because it is user

friendly and also cheap. The atmega328p is unarguably one

of the most widely used microcontrollers thus finding

support for implementing our project will be as

straightforward as possible. On top of that there are many

libraries available for the Arduino Uno for controlling

servos which is key when it comes to ensuring we are

sending command signals as quickly and reliably as

possible. UART on the atmega328p has 5V pins for Tx and

Rx so we needed to use a logic level shifter to communicate

to the Jetson Nano’s 3.3V Tx and Rx pins.

B. Jetson Nano

The NVIDIA Jetson Nano is a very powerful yet

affordable minicomputer with an embedded GPU which

can be used for processing computer vision. The purpose

of this computer is to process a constant feed of video and

detect drones in it. From there it will perform calculations

using some geometry to determine where the drone is in

the image. From there it will send signals to the servo PCB

via UART to tell the servos where to point to.

 The current method to calculate the angle is based on a

relationship between the drone’s known size, and its width

in pixels in the image. Using the premeasured drone length,

a relationship can be formed with pixels and distance. A

few assumptions must be made for the below equation to

be valid, i.e. the drone must be moving orthogonally to the

camera, and the drone must be perfectly enclosed by the

bounding box generated by the YOLO model. Due to these

assumptions not being met in practice, there is some error

to the below calculation.

Θ = tan(size_distance/distance_from_drone)

C. Camera

The camera we chose to use to capture video and send to

the Jetson Nano is a See3Cam CU30. This camera was a

good choice for our project because it’s supports a USB3.0

connection which enables its data rates to be up to 640

MBps which is more than enough for our requirements.

The camera is full 1080p, which is ideal for image

processing for the Jetson Nano wouldn’t be powerful

enough to process full 4K video. The camera is powered

from the Jetson Nano using the same USB3.0 cable that

transfers data which is ideal being that it’s only one wire.

The final benefit to choosing this camera is given all its

specifications it’s also small and light enough to fit on our

servo system mount. The size for the camera is as follows

40.7 x 40.7 x 33.4 mm. Weighing in at only 65 grams it’s

won’t prove to be an issue for our servos to hold up over

time too.

D. Servos

The servo of choice for our project is the SG90 9g by

tower pro. Weighing in at only 9g it’s the perfect choice

because it barely adds any weight to our sensor system

mount. Also, the servo provides enough torque to hold up

our camera and laser without an issue. Another benefit of

this servo is it’s cost of only $5 per servo. Being that we

need two of these servos one for panning and another for

tilting it’s key that they are affordable.

III. DEVICE POWER

Being that we have no project requirements to make this

design portable we decided to just stick with AC power.

This means that we have 2 power plugs, one for the Jetson

Nano and another for the PCB. Being that the Jetson Nano

was a full-blown computer with an integrated dedicated

GPU it was unreasonable to try to power it from a battery

pack. With that in mind, it didn’t make sense to try and use

a battery for our servo PCB.

A. Jetson Nano Power

The Jetson Nano power supply is responsible for

powering the camera as well. The power supply for the

servo PCB is responsible for powering the servos as well

as firing the laser too. There were a few different choices

to provide power to the Jetson Nano. The first and easiest

choice is though the 2-amp 5-volt micro-USB cable. The

next straightforward approach to providing it power would

be though the 4-amp 5-volt barrel plug jack. The last and

most complicated approach to powering the Jetson Nano

would be though the GPIO header pins. Although it’s not

recommended to only use a micro-USB cable to power the

entire board and all its peripherals it’s what we choose to

do. This isn’t recommended because depending on the type

of peripherals used, they may draw too much power.

However, given the peripherals we are currently using it

hasn’t given us an issue so far. If we were to use for

example a more power-hungry camera or keyboard it may

end up drawing too much power. [1]

B. Servo PCB Power

We considered using either a micro-USB cable or barrel

jack plug to power the PCB. In retrospect, a micro-USB

cable probably would have been a better choice being that

they are easier to come by then the specific barrel plug we

choose to use. We decided to use a 12-volt 6-amp barrel

plug that is mounted directly to the PCB. One issue we

faced was actually finding the barrel plug jack for the plug

that was already mounted to the PCB. Turned out that the

specific plug we chose to use isn’t very common and could

prove to be an issue if it was to ever break. With that in

mind if we were to do a second prototype for the PCB, we

would defiantly just use a simple micro-USB jack. With

that in mind the 12-volts is stepped down using a voltage

regulator to 6-volts for the servos. From there it’s stepped

down ever further to 5-volts for the microcontroller itself.

[2]

IV. SERVO CIRCUIT BOARD DESIGN

Our project required the ability to control two servos, one

to pan the sensor system and another to tilt it. In order to

control these servos, we needed a microcontroller that had

easy access to reliable and user-friendly servo control

libraries. On top of servo control we also needed the PCB

to reliably send and receive data via UART. Last but not

least the servo is also responsible for firing the laser at the

drone once it’s been successfully targeted.

A. Schematic Design

As seen in Fig. 1 below the main sub-systems of the PCB

are the voltage regulators, logic level shifters and the

microcontroller itself. There are a number of header pins as

well used for powering and controlling the servos as well

as the laser. We also have a couple other header pins

dedicated for programming and testing the microcontroller.

B. PCB Design

As for the actual design of the PCB being that we didn’t

have any size requirements it wasn’t too much of a

Figure 1: Schematic of PCB Design

challenge. The main concern being that we were using

UART as the only data transfer we needed prioritize

ensuring it was as reliable as possible. This meant

minimizing noise, the way we went about achieving this

was ensuring that the traces were as shot as possible

between the logic level shifters and the microcontroller.

This effort can be seen upon looking at the component

layout in Fig. 2 below. We decided to use all surface mount

components to make it look nice and to just keep the build

consistent.

C. Logic Level Converter

For our project a strong UART connection was

paramount in order to be able to send and receive data from

our Jetson Nano. This meant that we needed to implement

the logic level shifters on the PCB instead of using

breakout circuit board in order to minimize extra wiring

which could cause more loss and noise.

 The logic level converter is used between the custom

servo PCB and the Jetson Nano. Its purpose is to step up

the voltage from the Jetson Nano the UART signals from

3.3V to 5V for the atmega328p on the PCB. It also is used

to step 5V UART signals from the PCB back down to 3.3V

on the Jetson Nano. We used a breakout version of the

schematic below first to test the design then implemented

two of the same circuits on our PCB. The only real issue

we found with the logic level converters is that over time

they may not be as reliable as would have liked them to be.

With that said, if we were to make another version of the

PCB we would use more expensive components. The

circuit diagram for a single logic level converter can be

seen in Fig. 2 below. [3]

Figure 2: Logic Level Converter

D. Voltage regulators

 As for powering the various components on our PCB

we decided to use two different voltage regulators. This

was necessary because our microcontroller needed an input

voltage of 5 Volts while our servos operated most reliability

at 6 Volts. In order separate the input power out like this we

decided to have one very large voltage regulator which can

be seen in figure 2 on the bottom left side of the PCB. This

first voltage regulator was responsible for stepping the

input voltage from 12 Volts down to 6 Volts for the servos,

we chose to use a Stmicroelectronics chip called the

L7805ABD2T-TR. [4] This chip was an important choice

because needs to provide enough current power to not only

the atmega328p but also our two servos. [5] Being that the

chip provided up to 1.5A it supplied enough for everything

we needed. The second voltage regulator we chose was the

Texas Instruments chip called the TLV70033DDCT. It was

responsible for taking the 6 Volts from the first voltage

regulator and stepping it down to 5 Volts for the

atmega328p. The following power stage with voltage

regulars can be seen below in Fig. 3.

Figure 3: PCB Circuit Diagram

V. SOFTWARE

The RTDS uses a software pipeline that aims to

efficiently convert data captured by the sensor camera and

convert that into movement data given to the servos.

Through the use of a sophisticated and “lightweight” object

detection algorithm, alongside a series of embedded data

parsing algorithms, the RTDS will be able to recognize its

nearby targets and successful output tracking information.

A. YOLO (You Only Look Once)

The primary purpose of the RTDS is to be able to

identify and track flying nearby quadcopter drones. To the

extent of accomplishing this goal, an object detection

Figure 2: Logic Level Converter

algorithm is necessary in order to provide the device with

the ability to distinguish the targeted drones in their

viewfinder. A small variety of algorithms that were

considered lead to YOLOv3 (the third iteration in its

design) being the algorithm chosen for this role due to its

advantages.

One of these advantages includes its extensive

documentation. YOLO has become a very popular object

detection algorithm, and along with this popularity has

come a wide degree of documentation for its use in diverse

systems and environments. The existing resources

provided the team the ability to develop and use this

algorithm on a variety of different operating systems, and

to be able to develop its utility to exactly match our

specifications and requirements.

Another advantage was out-of-the-box usability. By

virtue of being able to start using the tools that

implemented the YOLO algorithm early in the design and

development process, it was anticipated that the RTDS

team would be able to identify problems early in the

training and testing processes and would have ample time

to both resolve those problems and optimize their

solutions.

YOLO at its core is a CNN (convolutional neural

network), as demonstrated in Fig. 4, that uses a novel

means of observing the entire given image both during

training and during trials. Most CNNs perform what can be

described as “scanning” the target image. At each and

every pixel interval they search for shapes and objects that

match that of a previously learned model. This approach

can be very time-consuming, however, as one can imagine

the amount of time (relatively speaking) it takes to perform

a full network of convolutions multiple times on multiple

regions, versus one single time against the entire image. [6]

Not only does this newer approach improve the speed of

the network, but it also improves the accuracy. By looking

at the entirety of an image during training, a model learns

not only what the target object looks like, but also what it

does not look like. The YOLO model simultaneously

learns both the positive identification of the target object,

as well as the negative space around it, giving it a more

robust capability to parse a target object from a cluttered

environment or background.

With the RTDS being a smaller constrained system,

however, even the relative efficiency of YOLO originally

proved to be too taxing of a process to run at a functional

rate. YOLOv3 uses a 106-layer full CNN, and initial tests

using it on the RTDS’s Jetson Nano saw the process rate

sit at around a useless 1-2 FPS (frames-per-second). Tiny

YOLOv3 is an adapted version of the YOLOv3

TABLE I

YOLOV3 PERFORMANCE COMPARISONS

Model Train Test mAP FLOPS FPS

YOLOv3-320 COCOtrainval test-dev 51.5 38.97 Bn 45

YOLOv3-416 COCOtrainval test-dev 55.3 65.86 Bn 35

YOLOv3-608 COCOtrainval test-dev 57.9 140.69 Bn 20

YOLOv3-tiny COCOtrainval test-dev 33.1 5.56 Bn 220

Figure 3: The YOLO architecture. Courtesy of Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi.

architecture, designed for solving this problem. As a mere

24-layer CNN, Tiny YOLOv3 suffers from a reduced

accuracy, but benefits from a much-increased processing

rate. These differences are observed in Table 1 [7],

comparing the mean average precision (mAP) to the FPS

of various implementations of YOLOv3, including

different CNN network resolutions of the standard 106-

layer YOLOv3 (i.e., YOLOv3-320 having a network

resolution of 320x320). As witnessed, the speed increase

of YOLOv3 greatly outweighs the lost accuracy, with Tiny

YOLO (YOLOv3-tiny) performing at about 64% the

accuracy of YOLOv3-320, but doing so nearly 5-times

more quickly.

B. Training YOLO

The approach that the RTDS required in order to train its

YOLO model was an atypical situation. It was evident from

the beginning of the design steps that the RTDS would

require a new, uniquely trained model in order to detect the

quadcopter drones it would be targeting. In order to train

such a model, however, a dataset needed to be acquired.

This would be accomplished either by finding an existing

open-source dataset, or by following the painstakingly long

path of curating a new one from scratch.

YOLO datasets have two requirements in general: An

image containing the object that is to be identified, and a

parallel text file containing the name of the class of that

object and its bounding-box’s coordinates with the image.

One such dataset was discovered early, called Drone-net,

maintained by Chuan-en Lin on Github [8]. Initial models

trained from this dataset however discovered a very evident

misalignment in the goals of the RTDS versus the style of

images used by Drone-net: The images of Drone-net were

all low-resolution, centered, clear images of a variety of

quadcopter drones. They were all prominently displayed in

their photos, most often being the obvious focus subject.

YOLO models trained from this dataset were quick to

identify similarly-viewed drones, but had a lot of difficulty

identifying drones from any reasonable distance away from

the camera (such as more than two or three feet), or drones

that were not in good lighting, in focus, or partially

obscured by foreground objects. This made it evident to the

team that a new dataset would need to be built using images

of drones that more closely matched the types of

environments the RTDS would be used in – at a distance,

with moving subjects, that might not be in the center of the

image.

C. Building the YOLO Dataset

Creating such a dataset required simply gathering

imagery from realistic environments and scenarios from

the perspective of the RTDS of a nearby flying drone.

These images were taken from various angles and

distances, using various lighting levels and backdrops.

Different cameras and resolutions were also used to capture

the widest possible variety of images of the target drone.

These images were then each annotated with a bounding

box to denote where in the image an object was, and what

the class (or name) of the object was. As of the writing of

this document, the most recently trained YOLO model

used a dataset containing a little over 2300 different

images, which is just cresting the minimum recommended

dataset size of about 2000 unique images [9]. This dataset

continues to grow however, as the team discovers new

environments in which the RTDS underperforms at

identification. Thus, new images are taken from the

troublesome environment and provided to a newly trained

model.

Models trained using such a paradigm have since been a

huge success, with each new model increasing the

robustness of the RTDS’s tracking capability.

D. Tracking Algorithm Pipeline

Using YOLO to track the drone only proves to be half

the battle for the RTDS. Once the YOLO model had been

sufficiently trained and implemented on the Jetson Nano, a

new pipeline needed to be developed in order to translate

those outputs from YOLO into an understandable format

such that the Arduino control board can provide directions

to the servo mounts. Fig. 5 provides an overview of all the

components of this pipeline in a narrative order.

The pipeline begins with using a third-party

development kit to optimize the actual YOLO runtime on Figure 4: Tracking Algorithm Pipeline

our development board. YOLOv3 is a computationally

intensive algorithm and runs in-optimally slow on the

Jetson Nano platform, at around 1-2 FPS. Even with the

less intensive Tiny YOLOv3 implementation, the Jetson

Nano FPS rate was insufficient to track objects in real time.

The solution was to use NVIDIA’s DeepStream SDK

which is optimized for the Jetson Nano’s GPU. This,

combined with using Tiny-YOLOv3, provided the means

to be able to consistently achieve about 24 FPS during

runtime.

The DeepStream SDK is built using the Gstreamer

platform, meaning that processing occurs through a

pipeline of plugins that perform actions on data. It comes

ready with prebuilt plugins for tracking and applying

machine learning algorithms, which simplifies

development. Developers using these tools are able to

create additional plugins that are more customized to their

system’s needs. These tools provided the groundwork on

which YOLO was to be implemented on the Jetson Nano.

The inter-process communication is handled using

ZeroMQ. ZeroMQ is a universal messaging library,

utilized to send messages over local addresses, or to other

computers or servers [10]. To simplify the purpose of each

process, it was decided to have the Deepstream pipeline

send useful metadata over a local port to a listening python

application responsible for commanding the slave board.

To further increase speed, Google protocol buffers were

utilized to serialize the metadata, decreasing packet size.

The Python communication application uses the

metadata sent by the DeepStream pipeline to generate the

relevant data to be read and understood by the slave

microcontroller board. These instructions include the

tracking and movement instructions for the servos, as well

as when to fire the laser. It also bears the responsibility of

determining when a tracked object has left the maximum

field of view. Additionally, it notifies the user of when

tracking is in progress, or when a hit occurs.

D. Slave IO Board

The utilized metadata includes the size of the captured

bounding box, the location of the bounding box within the

current image, and the type of detection (the label of object

detected – for the purposes of the RTDS this will always

be a drone). The application utilizes the most recent two

detections to approximate the speed and direction of the

tracked target. This is possible due to having the

approximate size of the drone being tracked as a known

value. By using the known size of the drone, as well as the

relative size of the bounding box, the distance of the drone

(how far it is from the RTDS) can also be algebraically

approximated. All these values, either known or measured

in real-time, are used for commanding the Slave IO.

The Slave IO uses a communication protocol specifically

defined by the RTDS team for transmitting the relevant

targeting information from the metadata. It uses a word

length of 4 bytes, consisting of two 16-bit signed integers,

describing the step size and angle relative to the x-axis.

Both values are used by the Slave microcontroller to

translate into a direction and a speed to move the camera.

In return, the Slave IO board is responsible for notifying

the Python application when it approaches the edge of the

viewing window. For firing the laser, a reserved word is

used, which is the only communication for which the

system requires an acknowledgement.

Finally, the Slave microcontroller carries the

responsibility for sending the final movement instructions

to the servos. It also is responsible for monitoring the

viewing angles and window of the servos and provides

notification if the commands it is receiving are approaching

the extreme edge of its field of view. The libraries for serial

of the ATMEGA328p chip on the Arduino Slave

microcontroller, however, do not allow for access to any

underlying API, meaning that interrupt-based serial

interfaces were difficult to implement. A solution to this

was found in protothreading in order to grab the

information from a communication socket, and for sending

and receiving serial information.

VI. CONCLUSION

We firmly believe that our project will pave the way for

the future when it comes to the personal and commercial

industry protection against drones. Whether it’s a rogue

drone or one being used to spy on someone our project is a

fundamental building block for future endeavors in this

field. Being able to not only recognize drones in an image

or video but also track them is a monumental achievement

for 3 undergraduate students to have accomplished.

For starts, the choice of using the powerful yet affordable

Jetson Nano to do image processing was brilliant. For it

allowed us to do everything we needed when it came to not

only image processing but also rapid prototyping and

development. The choice of using YOLO allowed us to

save time by not reinventing the wheel of neural networks

in computer vision but allowed us to train our own model

to confidently detect drones. The choice of our simple yet

powerful atmega 328p microcontroller allowed for easy

programming and implementation. All in all, our group

worked together just as well as our hardware did which

enabled us to have a successful project in the end.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Lei Wei with his

continued assistance and support throughout this project.

THE TEAM:

Joseph Musante will be

graduating with a Bachelor of

Science in Computer

Engineering. He spent a year

and a half working as A CWEP

for Lockheed Martin in Systems

and Software Engineering. Also

interned with Northrop

Grumman and accepted a full-time job there for software

engineering once he graduates.

Chance Reimer will be

graduating with a Bachelor of

Science in Computer and

Electrical Engineering. He has

had internships at Eizo Rugged

Solutions, Northrop Grumman,

and was a Coop at Siemens

Power and Gas. Chance’s main

interests include embedded engineering, computer vision,

and FPGA design.

Calvin Sands will be graduating

with a Bachelor of Science in

Computer Engineering. He has

spent the previous two years as

an intern with Lockheed Martin

as a Systems Engineer and a

Software Engineer. He has

recently accepted an offer to continue full-time in his

current position as a Software Engineer upon graduating.

REFERENCES

[1] Mitch Allen, “JETSON NANO POWER SUPPLY

(BARREL VS. MICRO USB)” desertbot.io, [Online].

Available: https://desertbot.io/blog/jetson-nano-power-supply-

barrel-vs-micro-usb. [Accessed 2 April 2020].

[2] “ATmega328”, Microchip, [Online]. Available:

https://www.microchip.com/wwwproducts/en/ATmega32

8. [Accessed 8 December 2019].

[3] “N-Channel Logic Level Enhancement Mode Field Effect

Transistor” Fairchild Semiconductor, Oct 2005. [Online].

Available:

https://cdn.sparkfun.com/datasheets/BreakoutBoards/BSS138.pd

f. [Accessed 13 February 2020].

[4] “Positive voltage regulator ICs” stmicroelectronics, [Online].

Available:

https://datasheet.lcsc.com/szlcsc/1810010314_STMicroelectroni

cs-L7805ABD2T-TR_C86206.pdf. [Accessed 9 November

2019].

[5] MertArduino, “How to Use a Servo Motor With an External

Power” instructables, [Online]. Available:

https://www.instructables.com/circuits/. [Accessed 26

November 2019].

[6] Redmon, Joseph, et al. “You Only Look Once: Unified,

Real-Time Object Detection.” 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016,

doi:10.1109/cvpr.2016.91.

[7] Redmon, Joseph. Darknet: Open Source Neural Networks in

C. Available: https://pjreddie.com/darknet/.

[8] Chuan-en Lin. “Chuanenlin/Drone-Net.” GitHub, 25 May

2019. Available: https://github.com/chuanenlin/drone-net.

[9] Alexey. “AlexeyAB/Darknet.” GitHub, 26 Oct. 2019.

Available: https://github.com/AlexeyAB/darknet.

[10] Hintjens, Pieter. “ØMQ - The Guide.” ØMQ - The Guide,

zguide.zeromq.org/page:all.

	Reactionary Targeting Defense System (RTDS)
	I. Introduction
	II. System Hardware
	A. Microcontroller
	B. Jetson Nano
	C. Camera
	D. Servos

	III. Device power
	A. Jetson Nano Power
	B. Servo PCB Power

	IV. Servo Circuit Board Design
	A. Schematic Design
	B. PCB Design
	C. Logic Level Converter
	D. Voltage regulators

	V. Software
	A. YOLO (You Only Look Once)
	B. Training YOLO
	C. Building the YOLO Dataset
	D. Tracking Algorithm Pipeline
	D. Slave IO Board

	VI. Conclusion
	Acknowledgement
	The Team:
	References

