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Abstract — The goal of this project is to provide a basis for 
future development related to tracking and targeting drones. 
By using computer vision, we are able to recognize a drone 
then fire a laser directly at it. Through extensible design, 
future developers will be able to use our project as a 
foundation to build upon by expanding its size and scope. The 
design uses a NVIDIA Jetson Nano to do image processing 
and sends targeting information to a servo PCB via UART. 
The custom-made servo PCB uses an atmega328p 
microcontroller to process UART data and control the servos 
to pan and tilt the camera and laser.  

Index Terms — Computer vision, convolutional neural 
networks, microcontrollers, artificial intelligence, embedded 
software. 

I. INTRODUCTION  

In today’s current age drones are becoming 

exponentially more popular for not just commercial 

purposes but also hobbyist and everyday folks as well. This 

rapid growth has raised some questions such as how we can 

go about protecting ourselves from the inevitable 

weaponization of drones.  

With that said there is not much research or other similar 

noncommercial projects who are implementing a fully 

autonomous solution to this issue. Having a system that 

could be used in commercial or noncommercial 

environment is key which is why keeping the cost low was 

paramount. Ideally someone who is passionate about 

computer vision and image processing should be able to 

pick up our project where we left off by hitting the ground 

running with an entire targeting system already 

implemented. Our project will be able to detect a drone 

between one to five feet then by using geometry we will be 

able to get the location of the drone in the image. From 

there our servo system uses two servos one to pan and the 

other to tilt the camera and laser. Once the drone has been 

successfully targeted, we will fire a laser on the drone as a 

proof of concept for taking down the drone. 

II. SYSTEM HARDWARE 

The system hardware chosen for the RTDS was selected 

for its balance of power and affordability. The goal was to 

develop the RTDS using practical, accessible components 

that would increase the reproducibility of the design, while 

also maximizing the capabilities of such a computationally 

expensive process that the RTDS would be performing. 

A. Microcontroller  

The microcontroller of choice for our project is the 

atmega328p for many different reasons. First and foremost, 

we wanted to choose this microcontroller because it is user 

friendly and also cheap. The atmega328p is unarguably one 

of the most widely used microcontrollers thus finding 

support for implementing our project will be as 

straightforward as possible. On top of that there are many 

libraries available for the Arduino Uno for controlling 

servos which is key when it comes to ensuring we are 

sending command signals as quickly and reliably as 

possible. UART on the atmega328p has 5V pins for Tx and 

Rx so we needed to use a logic level shifter to communicate 

to the Jetson Nano’s 3.3V Tx and Rx pins.  

B. Jetson Nano 

The NVIDIA Jetson Nano is a very powerful yet 

affordable minicomputer with an embedded GPU which 

can be used for processing computer vision. The purpose 

of this computer is to process a constant feed of video and 

detect drones in it. From there it will perform calculations 

using some geometry to determine where the drone is in 

the image. From there it will send signals to the servo PCB 

via UART to tell the servos where to point to. 

    The current method to calculate the angle is based on a 

relationship between the drone’s known size, and its width 

in pixels in the image. Using the premeasured drone length, 

a relationship can be formed with pixels and distance. A 

few assumptions must be made for the below equation to 

be valid, i.e. the drone must be moving orthogonally to the 

camera, and the drone must be perfectly enclosed by the 

bounding box generated by the YOLO model. Due to these 

assumptions not being met in practice, there is some error 

to the below calculation.  

 

Θ = tan(size_distance/distance_from_drone) 

C. Camera 

The camera we chose to use to capture video and send to 

the Jetson Nano is a See3Cam CU30. This camera was a 

good choice for our project because it’s supports a USB3.0 

connection which enables its data rates to be up to 640 

MBps which is more than enough for our requirements. 



The camera is full 1080p, which is ideal for image 

processing for the Jetson Nano wouldn’t be powerful 

enough to process full 4K video. The camera is powered 

from the Jetson Nano using the same USB3.0 cable that 

transfers data which is ideal being that it’s only one wire. 

The final benefit to choosing this camera is given all its 

specifications it’s also small and light enough to fit on our 

servo system mount. The size for the camera is as follows 

40.7 x 40.7 x 33.4 mm. Weighing in at only 65 grams it’s 

won’t prove to be an issue for our servos to hold up over 

time too.  

D. Servos  

The servo of choice for our project is the SG90 9g by 

tower pro. Weighing in at only 9g it’s the perfect choice 

because it barely adds any weight to our sensor system 

mount. Also, the servo provides enough torque to hold up 

our camera and laser without an issue. Another benefit of 

this servo is it’s cost of only $5 per servo. Being that we 

need two of these servos one for panning and another for 

tilting it’s key that they are affordable. 

III. DEVICE POWER 

Being that we have no project requirements to make this 

design portable we decided to just stick with AC power. 

This means that we have 2 power plugs, one for the Jetson 

Nano and another for the PCB. Being that the Jetson Nano 

was a full-blown computer with an integrated dedicated 

GPU it was unreasonable to try to power it from a battery 

pack. With that in mind, it didn’t make sense to try and use 

a battery for our servo PCB. 

A. Jetson Nano Power 

The Jetson Nano power supply is responsible for 

powering the camera as well. The power supply for the 

servo PCB is responsible for powering the servos as well 

as firing the laser too. There were a few different choices 

to provide power to the Jetson Nano. The first and easiest 

choice is though the 2-amp 5-volt micro-USB cable. The 

next straightforward approach to providing it power would 

be though the 4-amp 5-volt barrel plug jack. The last and 

most complicated approach to powering the Jetson Nano 

would be though the GPIO header pins. Although it’s not 

recommended to only use a micro-USB cable to power the 

entire board and all its peripherals it’s what we choose to 

do. This isn’t recommended because depending on the type 

of peripherals used, they may draw too much power. 

However, given the peripherals we are currently using it 

hasn’t given us an issue so far. If we were to use for 

example a more power-hungry camera or keyboard it may 

end up drawing too much power. [1] 

B. Servo PCB Power 

We considered using either a micro-USB cable or barrel 

jack plug to power the PCB. In retrospect, a micro-USB 

cable probably would have been a better choice being that 

they are easier to come by then the specific barrel plug we 

choose to use. We decided to use a 12-volt 6-amp barrel 

plug that is mounted directly to the PCB. One issue we 

faced was actually finding the barrel plug jack for the plug 

that was already mounted to the PCB. Turned out that the 

specific plug we chose to use isn’t very common and could 

prove to be an issue if it was to ever break. With that in 

mind if we were to do a second prototype for the PCB, we 

would defiantly just use a simple micro-USB jack. With 

that in mind the 12-volts is stepped down using a voltage 

regulator to 6-volts for the servos. From there it’s stepped 

down ever further to 5-volts for the microcontroller itself. 

[2] 

IV. SERVO CIRCUIT BOARD DESIGN 

Our project required the ability to control two servos, one 

to pan the sensor system and another to tilt it. In order to 

control these servos, we needed a microcontroller that had 

easy access to reliable and user-friendly servo control 

libraries. On top of servo control we also needed the PCB 

to reliably send and receive data via UART. Last but not 

least the servo is also responsible for firing the laser at the 

drone once it’s been successfully targeted.  

A. Schematic Design 

As seen in Fig. 1 below the main sub-systems of the PCB 

are the voltage regulators, logic level shifters and the 

microcontroller itself. There are a number of header pins as 

well used for powering and controlling the servos as well 

as the laser. We also have a couple other header pins 

dedicated for programming and testing the microcontroller. 

B. PCB Design 

As for the actual design of the PCB being that we didn’t 

have any size requirements it wasn’t too much of a 

Figure 1: Schematic of PCB Design 



challenge. The main concern being that we were using 

UART as the only data transfer we needed prioritize 

ensuring it was as reliable as possible. This meant 

minimizing noise, the way we went about achieving this 

was ensuring that the traces were as shot as possible 

between the logic level shifters and the microcontroller. 

This effort can be seen upon looking at the component 

layout in Fig. 2 below. We decided to use all surface mount 

components to make it look nice and to just keep the build 

consistent. 

C. Logic Level Converter 

For our project a strong UART connection was 

paramount in order to be able to send and receive data from 

our Jetson Nano. This meant that we needed to implement 

the logic level shifters on the PCB instead of using 

breakout circuit board in order to minimize extra wiring 

which could cause more loss and noise. 

   The logic level converter is used between the custom 

servo PCB and the Jetson Nano. Its purpose is to step up 

the voltage from the Jetson Nano the UART signals from 

3.3V to 5V for the atmega328p on the PCB. It also is used 

to step 5V UART signals from the PCB back down to 3.3V 

on the Jetson Nano. We used a breakout version of the 

schematic below first to test the design then implemented 

two of the same circuits on our PCB. The only real issue 

we found with the logic level converters is that over time 

they may not be as reliable as would have liked them to be. 

With that said, if we were to make another version of the 

PCB we would use more expensive components. The 

circuit diagram for a single logic level converter can be 

seen in Fig. 2 below. [3] 

Figure 2: Logic Level Converter 

D. Voltage regulators 

   As for powering the various components on our PCB 

we decided to use two different voltage regulators. This 

was necessary because our microcontroller needed an input 

voltage of 5 Volts while our servos operated most reliability 

at 6 Volts. In order separate the input power out like this we 

decided to have one very large voltage regulator which can 

be seen in figure 2 on the bottom left side of the PCB. This 

first voltage regulator was responsible for stepping the 

input voltage from 12 Volts down to 6 Volts for the servos, 

we chose to use a Stmicroelectronics chip called the 

L7805ABD2T-TR. [4] This chip was an important choice 

because needs to provide enough current power to not only 

the atmega328p but also our two servos. [5] Being that the 

chip provided up to 1.5A it supplied enough for everything 

we needed. The second voltage regulator we chose was the 

Texas Instruments chip called the TLV70033DDCT. It was 

responsible for taking the 6 Volts from the first voltage 

regulator and stepping it down to 5 Volts for the 

atmega328p.  The following power stage with voltage 

regulars can be seen below in Fig. 3. 

Figure 3: PCB Circuit Diagram 

V. SOFTWARE 

The RTDS uses a software pipeline that aims to 

efficiently convert data captured by the sensor camera and 

convert that into movement data given to the servos. 

Through the use of a sophisticated and “lightweight” object 

detection algorithm, alongside a series of embedded data 

parsing algorithms, the RTDS will be able to recognize its 

nearby targets and successful output tracking information. 

A. YOLO (You Only Look Once) 

The primary purpose of the RTDS is to be able to 

identify and track flying nearby quadcopter drones. To the 

extent of accomplishing this goal, an object detection 

Figure 2: Logic Level Converter 



algorithm is necessary in order to provide the device with 

the ability to distinguish the targeted drones in their 

viewfinder. A small variety of algorithms that were 

considered lead to YOLOv3 (the third iteration in its 

design) being the algorithm chosen for this role due to its 

advantages. 

One of these advantages includes its extensive 

documentation. YOLO has become a very popular object 

detection algorithm, and along with this popularity has 

come a wide degree of documentation for its use in diverse 

systems and environments. The existing resources 

provided the team the ability to develop and use this 

algorithm on a variety of different operating systems, and 

to be able to develop its utility to exactly match our 

specifications and requirements. 

Another advantage was out-of-the-box usability. By 

virtue of being able to start using the tools that 

implemented the YOLO algorithm early in the design and 

development process, it was anticipated that the RTDS 

team would be able to identify problems early in the 

training and testing processes and would have ample time 

to both resolve those problems and optimize their 

solutions. 

YOLO at its core is a CNN (convolutional neural 

network), as demonstrated in Fig. 4, that uses a novel 

means of observing the entire given image both during 

training and during trials. Most CNNs perform what can be 

described as “scanning” the target image. At each and 

every pixel interval they search for shapes and objects that 

match that of a previously learned model. This approach 

can be very time-consuming, however, as one can imagine 

the amount of time (relatively speaking) it takes to perform 

a full network of convolutions multiple times on multiple 

regions, versus one single time against the entire image. [6] 

Not only does this newer approach improve the speed of 

the network, but it also improves the accuracy. By looking 

at the entirety of an image during training, a model learns 

not only what the target object looks like, but also what it 

does not look like. The YOLO model simultaneously 

learns both the positive identification of the target object, 

as well as the negative space around it, giving it a more 

robust capability to parse a target object from a cluttered 

environment or background. 

With the RTDS being a smaller constrained system, 

however, even the relative efficiency of YOLO originally 

proved to be too taxing of a process to run at a functional 

rate. YOLOv3 uses a 106-layer full CNN, and initial tests 

using it on the RTDS’s Jetson Nano saw the process rate 

sit at around a useless 1-2 FPS (frames-per-second). Tiny 

YOLOv3 is an adapted version of the YOLOv3 

TABLE I 

YOLOV3 PERFORMANCE COMPARISONS 

Model Train Test mAP FLOPS FPS 

YOLOv3-320 COCOtrainval test-dev 51.5 38.97 Bn 45 

YOLOv3-416 COCOtrainval test-dev 55.3 65.86 Bn 35 

YOLOv3-608 COCOtrainval test-dev 57.9 140.69 Bn 20 

YOLOv3-tiny COCOtrainval test-dev 33.1 5.56 Bn 220 

 

Figure 3: The YOLO architecture. Courtesy of Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. 



architecture, designed for solving this problem. As a mere 

24-layer CNN, Tiny YOLOv3 suffers from a reduced 

accuracy, but benefits from a much-increased processing 

rate. These differences are observed in Table 1 [7], 

comparing the mean average precision (mAP) to the FPS 

of various implementations of YOLOv3, including 

different CNN network resolutions of the standard 106-

layer YOLOv3 (i.e., YOLOv3-320 having a network 

resolution of 320x320). As witnessed, the speed increase 

of YOLOv3 greatly outweighs the lost accuracy, with Tiny 

YOLO (YOLOv3-tiny) performing at about 64% the 

accuracy of YOLOv3-320, but doing so nearly 5-times 

more quickly. 

B. Training YOLO 

The approach that the RTDS required in order to train its 

YOLO model was an atypical situation. It was evident from 

the beginning of the design steps that the RTDS would 

require a new, uniquely trained model in order to detect the 

quadcopter drones it would be targeting. In order to train 

such a model, however, a dataset needed to be acquired. 

This would be accomplished either by finding an existing 

open-source dataset, or by following the painstakingly long 

path of curating a new one from scratch. 

YOLO datasets have two requirements in general: An 

image containing the object that is to be identified, and a 

parallel text file containing the name of the class of that 

object and its bounding-box’s coordinates with the image. 

One such dataset was discovered early, called Drone-net, 

maintained by Chuan-en Lin on Github [8]. Initial models 

trained from this dataset however discovered a very evident 

misalignment in the goals of the RTDS versus the style of 

images used by Drone-net: The images of Drone-net were 

all low-resolution, centered, clear images of a variety of 

quadcopter drones. They were all prominently displayed in 

their photos, most often being the obvious focus subject. 

YOLO models trained from this dataset were quick to 

identify similarly-viewed drones, but had a lot of difficulty 

identifying drones from any reasonable distance away from 

the camera (such as more than two or three feet), or drones 

that were not in good lighting, in focus, or partially 

obscured by foreground objects. This made it evident to the 

team that a new dataset would need to be built using images 

of drones that more closely matched the types of 

environments the RTDS would be used in – at a distance, 

with moving subjects, that might not be in the center of the 

image. 

C. Building the YOLO Dataset 

Creating such a dataset required simply gathering 

imagery from realistic environments and scenarios from 

the perspective of the RTDS of a nearby flying drone. 

These images were taken from various angles and 

distances, using various lighting levels and backdrops. 

Different cameras and resolutions were also used to capture 

the widest possible variety of images of the target drone. 

These images were then each annotated with a bounding 

box to denote where in the image an object was, and what 

the class (or name) of the object was. As of the writing of 

this document, the most recently trained YOLO model 

used a dataset containing a little over 2300 different 

images, which is just cresting the minimum recommended 

dataset size of about 2000 unique images [9]. This dataset 

continues to grow however, as the team discovers new 

environments in which the RTDS underperforms at 

identification. Thus, new images are taken from the 

troublesome environment and provided to a newly trained 

model. 

Models trained using such a paradigm have since been a 

huge success, with each new model increasing the 

robustness of the RTDS’s tracking capability. 

D. Tracking Algorithm Pipeline 

Using YOLO to track the drone only proves to be half 

the battle for the RTDS. Once the YOLO model had been 

sufficiently trained and implemented on the Jetson Nano, a 

new pipeline needed to be developed in order to translate 

those outputs from YOLO into an understandable format 

such that the Arduino control board can provide directions 

to the servo mounts. Fig. 5 provides an overview of all the 

components of this pipeline in a narrative order. 

The pipeline begins with using a third-party 

development kit to optimize the actual YOLO runtime on Figure 4: Tracking Algorithm Pipeline 



our development board. YOLOv3 is a computationally 

intensive algorithm and runs in-optimally slow on the 

Jetson Nano platform, at around 1-2 FPS. Even with the 

less intensive Tiny YOLOv3 implementation, the Jetson 

Nano FPS rate was insufficient to track objects in real time. 

The solution was to use NVIDIA’s DeepStream SDK 

which is optimized for the Jetson Nano’s GPU. This, 

combined with using Tiny-YOLOv3, provided the means 

to be able to consistently achieve about 24 FPS during 

runtime. 

The DeepStream SDK is built using the Gstreamer 

platform, meaning that processing occurs through a 

pipeline of plugins that perform actions on data. It comes 

ready with prebuilt plugins for tracking and applying 

machine learning algorithms, which simplifies 

development. Developers using these tools are able to 

create additional plugins that are more customized to their 

system’s needs. These tools provided the groundwork on 

which YOLO was to be implemented on the Jetson Nano. 

The inter-process communication is handled using 

ZeroMQ. ZeroMQ is a universal messaging library, 

utilized to send messages over local addresses, or to other 

computers or servers [10]. To simplify the purpose of each 

process, it was decided to have the Deepstream pipeline 

send useful metadata over a local port to a listening python 

application responsible for commanding the slave board. 

To further increase speed, Google protocol buffers were 

utilized to serialize the metadata, decreasing packet size. 

The Python communication application uses the 

metadata sent by the DeepStream pipeline to generate the 

relevant data to be read and understood by the slave 

microcontroller board. These instructions include the 

tracking and movement instructions for the servos, as well 

as when to fire the laser. It also bears the responsibility of 

determining when a tracked object has left the maximum 

field of view. Additionally, it notifies the user of when 

tracking is in progress, or when a hit occurs. 

D. Slave IO Board 

The utilized metadata includes the size of the captured 

bounding box, the location of the bounding box within the 

current image, and the type of detection (the label of object 

detected – for the purposes of the RTDS this will always 

be a drone). The application utilizes the most recent two 

detections to approximate the speed and direction of the 

tracked target. This is possible due to having the 

approximate size of the drone being tracked as a known 

value. By using the known size of the drone, as well as the 

relative size of the bounding box, the distance of the drone 

(how far it is from the RTDS) can also be algebraically 

approximated. All these values, either known or measured 

in real-time, are used for commanding the Slave IO. 

The Slave IO uses a communication protocol specifically 

defined by the RTDS team for transmitting the relevant 

targeting information from the metadata. It uses a word 

length of 4 bytes, consisting of two 16-bit signed integers, 

describing the step size and angle relative to the x-axis. 

Both values are used by the Slave microcontroller to 

translate into a direction and a speed to move the camera. 

In return, the Slave IO board is responsible for notifying 

the Python application when it approaches the edge of the 

viewing window. For firing the laser, a reserved word is 

used, which is the only communication for which the 

system requires an acknowledgement. 

Finally, the Slave microcontroller carries the 

responsibility for sending the final movement instructions 

to the servos. It also is responsible for monitoring the 

viewing angles and window of the servos and provides 

notification if the commands it is receiving are approaching 

the extreme edge of its field of view. The libraries for serial 

of the ATMEGA328p chip on the Arduino Slave 

microcontroller, however, do not allow for access to any 

underlying API, meaning that interrupt-based serial 

interfaces were difficult to implement. A solution to this 

was found in protothreading in order to grab the 

information from a communication socket, and for sending 

and receiving serial information. 

VI. CONCLUSION 

We firmly believe that our project will pave the way for 

the future when it comes to the personal and commercial 

industry protection against drones. Whether it’s a rogue 

drone or one being used to spy on someone our project is a 

fundamental building block for future endeavors in this 

field. Being able to not only recognize drones in an image 

or video but also track them is a monumental achievement 

for 3 undergraduate students to have accomplished.  

For starts, the choice of using the powerful yet affordable 

Jetson Nano to do image processing was brilliant. For it 

allowed us to do everything we needed when it came to not 

only image processing but also rapid prototyping and 

development. The choice of using YOLO allowed us to 

save time by not reinventing the wheel of neural networks 

in computer vision but allowed us to train our own model 

to confidently detect drones. The choice of our simple yet 

powerful atmega 328p microcontroller allowed for easy 

programming and implementation. All in all, our group 

worked together just as well as our hardware did which 

enabled us to have a successful project in the end.  
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